EE 330 Lecture 34

Layout of Current Mirrors

Common-Centroid Layouts

High Gain Amplifiers

Cascode Amplifiers

Fall 2024 Exam Schedule

Exam 1 Friday Sept 27 Exam 2 Friday October 25 Exam 3 Friday Nov 22

Final Exam Monday Dec 16 12:00 - 2:00 PM

Review From Previous Lecture

Basic Amplifier Application Gain Table

Can use these equations only when small signal circuit is EXACTLY like that shown !!

(when stages are unilateral or not unilateral) Formalization of cascade circuit analysis working from load to input:

R_{ink} includes effects of all loading Must recalculate if any change in loading Analysis systematic and rather simple

$$
\frac{\mathbf{v}_{\text{OUT}}}{\mathbf{v}_{\text{IN}}} = \frac{\mathbf{v}_{1}}{\mathbf{v}_{\text{IN}}} \frac{\mathbf{v}_{2}}{\mathbf{v}_{1}} \frac{\mathbf{v}_{3}}{\mathbf{v}_{2}} \frac{\mathbf{v}_{\text{OUT}}}{\mathbf{v}_{3}}
$$

This was the approach used in analyzing the previous cascaded amplifier

Review From Previous Lecture

Current Sources/Mirrors

Will show circuit in red behaves as a current source

R and Q_0 simply generate voltage V_{xx} in previous circuit But sensitivity of I₁ is much smaller than using voltage source for generating V_{xx}

Summary of Missing Material from Lecture 33

Start Here:

npn Current Mirror

If the base currents are neglected

- **Output current linearly dependent on I in**
- **Small-signal and large-signal relationships the same since linear**
- **Serves as a current amplifier**
- **Widely used circuit**

But Iin must be positive !

Amplifies both positive and negative currents (provided i_{IN}>-I_{BS})

E0

Current amplifiers are easy to build !!

Current gain can be accurately controlled with appropriate layout !!

$$
I_{\text{out}} = ?
$$

n-channel Current Mirror

- Current mirror gain can be accurately controlled !
- Layout is important to get accurate gain (for both MOS and BJT)

n-channel current mirror current amplifier

Amplifies both positive and negative currents

multiple sourcing and sinking current outputs

m and k may be different Often M=1

Current Sources/Mirrors Summary

- Current mirror gain can be accurately controlled !
- Layout is important to get accurate gain (for both MOS and BJT)

Summary of Missing Material from Lecture 33

End Here:

Gate area after fabrication depicted

Layout of Current Mirrors

Example with M = 2

Better Layout

Layout of Current Mirrors

Example with M = 2

And both magnitude and direction of gradient effects are a random variable which will vary across a die

Denotes Geometric Centroid

Geometric Centroids of Channel

Two Transistors:

Two Transistors each with two parts:

Common Centroid for Ideally Matched Devices

Two Transistors each with two parts:

Common Centroid for Matched Devices

Two Transistors each with two parts:

Common Centroid for Ratioed Devices

$$
M = \frac{W_2}{W_1} \frac{L_1}{L_2} = 2
$$

Two Transistors with different effective widths:

Threshold voltage dependent upon position

 $V_{TH}(x,y)$

- ‒ Significant changes in threshold voltage can occur due to gradient effects
- ‒ This can seriously degrade matching in matching-critical circuits

- reasonably accurately modeled with an "equivalent" threshold voltage
- For linear gradient, $\mathsf{V}_{\mathsf{THEQ}}\mathsf{=}\mathsf{V}_{\mathsf{TH}}(\mathsf{X}_{\mathsf{C}},\mathsf{Y}_{\mathsf{C}})$

 (X_C, Y_C)

Layout of Current Mirrors

Even Better Layout

$$
M = \left[\frac{W_2}{W_1} \frac{L_1}{L_2}\right]
$$

$$
M = \left[\frac{2W_1 + 4\Delta W}{W_1 + 2\Delta W} \bullet \frac{L_1 + 2\Delta L}{L_1 + 2\Delta L} \right] = 2
$$

$$
M = \left[\frac{2W_1 + 4\Delta W}{W_1 + 2\Delta W} \bullet \frac{L_1 + 2\Delta L}{L_1 + 2\Delta L} \right] = 2
$$

- **This is termed a common-centroid layout**
- **Linear gradient mismatch eliminated with common-centroid layout !**

Common-Centroid Layouts

- Individual transistors often decomposed into parallel multiple unary devices connected in parallel
- Common-Centroid layout approach widely used to minimize (ideally cancel) gradient effects in matching-critical circuits
- Applications extend well beyond current mirrors
- More than 2 devices can share a common centroid

If I_0 is practically generated (it can be), now have available a large number of accurate current sources or sinks that can be used for biasing and for other purposes on chip !

Will now return to discussion of high gain amplifiers

Why are we interested in high-gain amplifiers?

• High gain amplifiers typically have some very undesirable properties

Nonlinear, gain highly dependent upon process variations and temperature, frequency response poor, noisy, ….

• So we can build feedback amplifiers !!

How can we build the current source? What is the small-signal model of an actual current source?

Biasing circuit uses same V_{CC} as amplifier and no other independent sources

- Bias circuitry requires only a single independent dc voltage source, resistor, and BJT !
- Incremental overhead is only one transistor, Q_B

Biasing Circuit

How can we build the current source?

What is the small-signal model of an actual current source?

- Very practical methods for biasing the BJTs (or MOSFETs) can be used
- Current Mirrors often used for generating sourcing and sinking currents
- Can think of biasing transistors with V_{XX} and V_{YY} in these current sources

Small-signal Model of BJT Current Sinks and Sources

Small-signal Model of BJT Current Sinks and Sources

Small-signal model of all other BJT Sinks and Sources introduced so far are the same

Small-signal Model of MOS Current Sinks and Sources

Small-signal model of all other MOS Sinks and Sources introduced thus far are the same

- **Nonideal current source decreased the gain by a factor of 2**
- **But the voltage gain is still quite large (-4000)**

High-gain amplifier **Can the gain be made even larger? Discuss**

The Cascode Configuration

The Cascode Amplifier (consider npn BJT version)

- **Actually a cascade of a CE stage followed by a CB stage but usually viewed as a "single-stage" structure**
- **Cascode structure is widely used**

Basic Amplifier Structures

- 1. Common Emitter/Common Source
- 2. Common Collector/Common Drain
- 3. Common Base/Common Gate
- 4. Common Emitter with R_{E} / Common Source with R_{S}
- 5. Cascode (actually CE:CB or CS:CD cascade)
- 6. Darlington (special CE:CE or CS:CS cascade)

The first 4 are most popular

Cascode Configuration

Discuss

 $({\tt g}_{\sf \pi2}$ +g $_{\tt 01})$ VCC 02 π2 01 02 π2 $\left[\frac{\rm g_{m1}(g_{02}+g_{m2})}{\rm g_{02}(g_{\pi2}+g_{01})}\right]\!\cong\!-\!\left[\frac{\rm g_{m1}g_{m2}}{\rm g_{02}g_{\pi2}}\right]$ 02 $(9$ 01⁺9π2 $)\quad$ $\begin{array}{|c|} \[-1mm] \[-1mm] \scriptstyle{\frown} \end{array}$ 9 ₀₂9 $_{\pi}$ 2 0CC 01⁻902⁻9π2 ⁻⁹m2 | l 9m2 9 2 (9 0 1 9 1 9 1 9 0 2 9 90° C $=$ 9₀₁+9₀₂+9_{π2}+9_{m2} | | 9 $\begin{bmatrix} 902(801+84) \end{bmatrix}$ $\begin{bmatrix} 9028 \end{bmatrix}$ $\left[\frac{302(301.9) \times 10^{-14} \text{ J}}{901+902+9\pi^2} \right] \approx \left[\frac{302312}{9\pi^2}\right]$ $q_{0CC} = \left[\frac{g_{02}(g_{01} + g_{01})}{g_{02}(g_{01} + g_{02} + g_{01})}\right] = \left[\frac{g_{02}g_{\pi2}}{g_{02}g_{\pi2}}\right]$
 $q_{\pi CC} = g_{\pi1}$
 $q_{\pi CC} = g_{\pi1}$

Cascode Configuration

• **Voltage gain is a factor of β larger than that of the CE amplifier with current source load**

• **Output impedance is a factor of β larger than that of the CE amplifier**

This gain is very large and only requires two transistors!

What happens to the gain if a transistor-level current source is used for IB?

Cascode Configuration

Cascode Configuration

High-gain amplifier comparisons

This is a dramatic reduction in gain compared to what the ideal current source biasing provided

Cascode Configuration

But recall

$$
A_{VCC} \cong -\left[\frac{g_{m1}}{g_{01}}\right]\beta
$$

Thus

$$
A_V \approx -\left[\frac{g_{m1}}{g_{01}}\right]
$$

$$
A_V \approx -\left[\frac{I_{CQ}}{I_{CQ}}\right]_{V_{AF}} = -\left[\frac{V_{AF}}{V_t}\right] \approx -8000
$$

- This is still a factor of 2 better than that of the CE amplifier with transistor current $\textbf{source} \mid_{\text{A}_{\text{MCF}}}\text{=} |\frac{\texttt{G}\text{m1}}{\text{A}}$ VCE 01 Avec $\cong -\frac{g_1}{g_2}$ $\left(A_{\text{VCE}} \cong -\left[\frac{g_{\text{m1}}}{2g_{01}}\right]\right)$
- **It only requires one additional transistor**
- **But its not nearly as good as the gain the cascode circuit seemed to provide**

Cascode Configuration Comparisons

In particular, one with a higher output impedance?

Better current sources

Need a higher output impedance than g_0

Can a current source be built with the cascode circuit ?

Cascode current sources

Cascode current sources

Cascode current sources

For the BJT cascode current sources

$$
g_{0CC} = \left[\frac{g_{02}(g_{01} + g_{\pi 2})}{g_{01} + g_{02} + g_{\pi 2} + g_{\pi 2}}\right] \approx \left[\frac{g_{02}g_{\pi 2}}{g_{\pi 2}}\right] = \frac{g_{01}}{\beta}
$$

Cascode Configuration

Cascode Configuration

$$
A_V \approx -\left[\frac{g_{m1}}{\frac{g_{01}}{g_{1}} + g_{0CC}}\right] \approx -\left[\frac{g_{m1}}{\frac{g_{01}}{g_{1}} + \frac{g_{03}}{g_{3}}}\right]
$$
\n
$$
1 \text{ if } \beta_1 = \beta_3 = \beta
$$
\n
$$
A_V = -\left[\frac{g_{m1}}{g_{01}}\right] \frac{\beta}{2}
$$
\n
$$
v_{\text{OUT}} \qquad A_V = -\left[8000\right] \frac{100}{2} \approx -400,000
$$

- **This gain is very large and is a factor of 2 below that obtained with an ideal current source biasing**
- **Although the factor of 2 is not desired, the performance of this circuit is still very good**
- **This factor of 2 gain reduction is that same as was observed for the CE amplifier when a transistor-level current source was used**
- Biasing voltages V_{zz} and V_{SS} are critical so seldom **used single-ended but good biasing strategies exist for differential operation**

High Gain Amplifiers Seldom Used Open Loop

If A_v =-400,000 and V_{IN} increases by 1mV, what would happen at the output?

 $|V_{\text{OUT}}|$ would increase by 400,000 x 1mV=-400V

The Cascode Amplifier (consider n-ch MOS version)

$$
A_{VCC} \cong -\left[\frac{g_{m1}g_{m2}}{g_{01}g_{02}}\right]
$$

$$
g_{0CC} \cong \left[\frac{g_{01}g_{02}}{g_{m2}}\right]
$$

Discuss

Same issues for biasing with current source as for BJT case

With cascode current source for I_B, gain **only drops by a factor of 2 from value with ideal current source**

The Cascode Amplifier (consider n-ch MOS version)

 $VCC \cong \begin{array}{c} -1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array}$

 $A_{VCC} \cong -\left[\frac{g_{m1}g}{g}\right]$

m19m2

<u>əm 19</u>
9019

Current Source Summary (BJT)

Basic Cascode

Current Source Summary (MOS) **Basic Cascode**

High Gain Amplifier Comparisons (n-ch MOS)

High Gain Amplifier Comparisons (BJT)

m1

 $v_{\scriptscriptstyle\text{IN}}$

V

 V_{SS}

m1

 $-\left[\frac{\textsf{g}_{\textsf{m1}}}{\textsf{g}_{\textsf{01}}}\right]$

 $A_{V} = -\left| \frac{\mathsf{g}_{m1}}{\mathsf{g}_{m2}} \right| \underline{\beta}$

01

g₀₁ |2

 \lceil a_{m 1} \rceil

01

g

V

A $v \equiv -\frac{g}{g}$

- Single-ended high-gain amplifiers inherently difficult to bias (because of the high gain)
- Biasing becomes practical when used in differential applications
- These structures are widely used but usually with differential inputs

Stay Safe and Stay Healthy !

End of Lecture 34